

CONTENTS

	Abo	ut This Manual	01
1	Safe	ety	01
	1.1	Safety Instruction	01
2	Brie	fIntroduction	03
	2.1	System Solution	03
3	Inst	allation	04
	3.1	Packaging List	04
	3.2	Location Selection and Installation	04
		3.2.1 Requirements for installation location	04
		3.2.2 Installing the inverter	05
	3.3	Connection Overview	07
		3.3.1 System connection	07
	3.4	PV Connection	80
	3.5	Battery Connection	10
		3.5.1 Battery power cable connection	10
		3.5.2 Battery communication cable connection	10
	3.6	Grid&EPS load Connection	12
		3.6.1 Grid type selection	12
		3.6.2 Grid and EPS load connection for split-phase service	12
		3.6.3 AC cable connection	13
		3.6.4 CT/Meter connection	13
	3.7	Working with Generator	15
		3.7.1 Generator system connection	15
		3.7.2 Generator Startup and stop settings	17
	3.8	AC Coupling Installation Connection	17
	3.9	Parallel System Connection	19
		3.9.1 Connection for paralleling system	19

	3.10	Moni	tor System Setup	21
		3.10.1	Wifi/GPRS/4G/WLAN dongle connection	21
		3.10.2	Setup the Monitor system	- 22
		3.10.3	Set homewifi password to dongle	22
		3.10.4	Third party RS485 communication	- 23
4	Ope	ratio	n Guide	24
	4.1	Oper	ation Mode	- 24
		4.1.1	Self-usage mode (Default)	24
		4.1.2	Charge first mode	- 25
		4.1.3	AC charge mode	26
	4.2	LCD	Display	26
		4.2.1	Viewing information and alarm/fault record	· 26
		4.2.2	Setting parameters	- 28
	4.3	Start	-up and shut down the inverter	30
		4.3.1	Start up the inverter	· 30
		4.3.2	Shut down the inverter	· 30
5	Τrοι	ıblesł	nooting & Maintenance	· 31
	5.1	Regu	lar Maintenance	31
	5.2	LED D	Displays	· 31
	5.3	Troul	oleshooting Based On LCD Displays	31
	54	Fan re	eplacement	. 34

5.4 - 1-

1. Safety

1.1 Safety Instruction

General Safety Instructions

Inetrnationgl safety requlatio have been tirictly observed in the design and testing of the inverter Prior to any work ,carefully read all safety instructiong and observe them at all times when working on or with the inveter. The installation must adhere to all applicable national or international standards or regulations.

Incorrect operation or work may cause:

- injury or death to the operator or a third party
- damage to the inverter and other properties belonging to the operator or a third party.

Important Safety Notifications

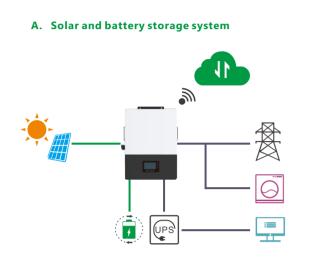
There are various safety issues that must be carefully conveyd prior to during and after the installation, as well as During future operation and maintenance. The following are important safety notifications for the operator, owner, And user of this product under normal conditions of use..

A DANGER Dangers of High Voltages and Large Current

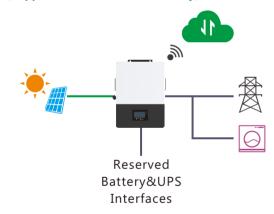
- Beware of high PV voltage. Please turn-off the DC switch of PV Panel output before and during the installation to avoid electric shock.
- Beware at the high grid voltage. Please turn-off the AC switch at the grid connection before and during the installation to avoid electric shock.
- Beware of large current of the battery output. Please turn-off the battery module before and during the installation to avoid electric shock.
- Do not open the inverter when it's working to avoid electric shock and damages from live voltage and current from the system.
- Do not operate the inverter when it's working, only the LCD and buttons can be touched in limited cases by qualified personnel, Other parts of the inverter can be touched when the inverter is in a safe state (e.g, fully shut-down).
- Do not connect or disconnect any connections (PV, battery, grid, communication etc.) of the inverter when it's working.
- Make sure the inverter is well grounded, An operator should make sure he is well protected by reasonable and professional insulation measurements (e.g, personal protective equipment (PPE).
- Inspect relevant existing wiring on-site of the installation is in good condition before installation, operation or maintenance.
- Inspect that connections are good between the inverter and PV, battery and grid during installation to prevent damages or injuries caused by bad connections.

WARNING Avoid Misoperation and Inappropriate Usage

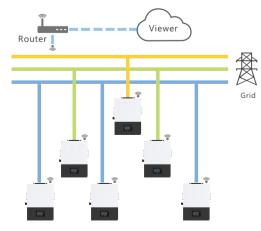
- All the work of this product (system design, installation, operation, setting, configuration and maintenance) must be carried out by qualified personnel as required.
- All connections must be in accordance with local and national regulations and standards.
- The inverter and system can inter-connected with the utility grid only if the utility grid permits it.
- All the warning labels or nameplates on the inverter must be clearly visible and must not be removed, covered or pasted.
- The installation should consider the safety of future users when choosing the right position and location as specified in this manual.
- Please keep the children away from touching or misusing the inverter and relevant systems.
- Beware of burning hurt, the inverter and some parts of the system could be hot when working, please do not touch the inverter surface or most of the parts when they are working. During inverter working states, only the LCD and buttons could be touched.

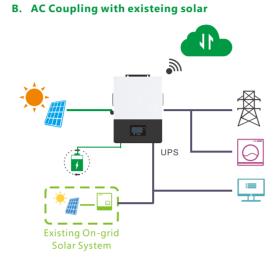

NOTICE

- Please carefully read this manual before any work is carried out on this inverter, After the installation, please keep this manual carefully stored and easy to access at any time.
- The qualified personnel should have received training in electrical system installation and commissioning as well as dealing with hazards, They should also be accustomed with the manual and other related documents. As the installer or operator, they must be familiar with local regulations and directives.

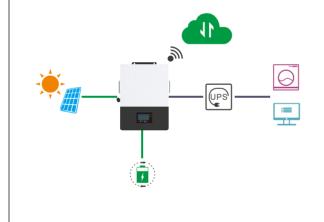

Brief Introduction 2.

System Solution 2.1

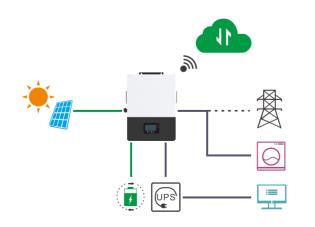

This product and its associated system are suitable for the following system applications (system diagram):



C. On-grid solar system without battery (Support EPS even without battery)



E. Single and three phase paralleling system



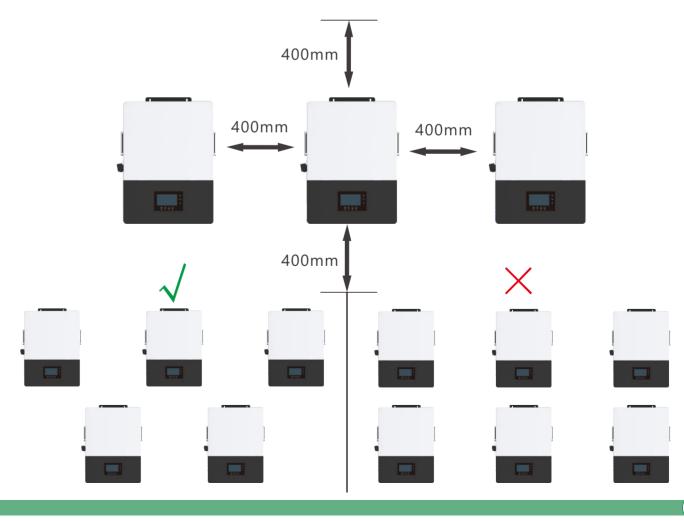
D. Off-grid and back-up applications

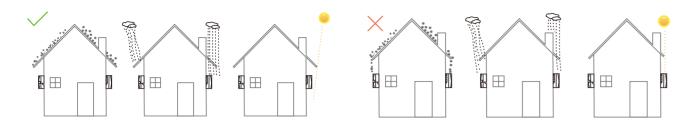
F. Energy storage system with peak shaving Function

Installation 3.

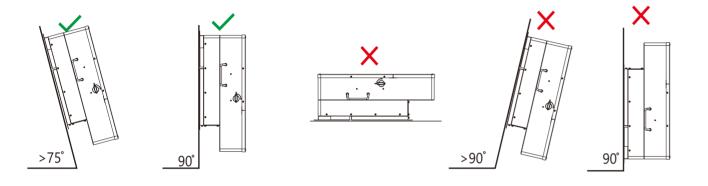
Packaging List & Storing 3.1

Packaging List

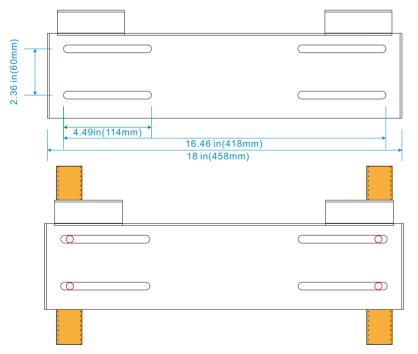

When the packaging is unpacked, the inner components should match those listed in the list below.


Location Selection and Installation 3.2

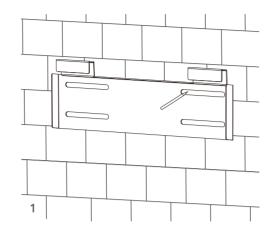
Requirements for installation location 3.2.1


- a. The mounting wall should be strong enough to bear the weight of the inverter .
- b. Please maintain the minimum clearances presented below for adequate heat dissipation.

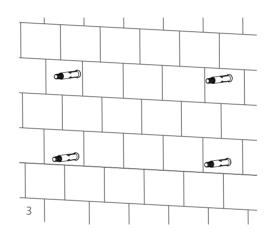
c. Never position the inverter in direct sunlight, rain, or snow. Please refer to the figure below and choose a well-shaded site ora shed to protect the inverter from direct sunlight, rain, and snow etc. PROTECT the LCD screen from excessive UV exposure



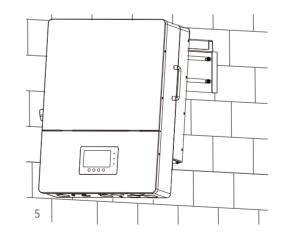
d. The inverter should be installed upright on a vertical surface.


Installing the inverter 3.2.2

The inverter is wall-mounted type and, should be installed on a vertical, solid mounting surface, such as wood studs, brick or concrete wall. Two or more persons may be needed to install the inverter due to its weight. The slots on the mounting bracket can accommodate various stud spacings from 12inches(305mm) to 16inches(406mm).

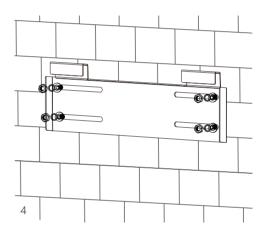


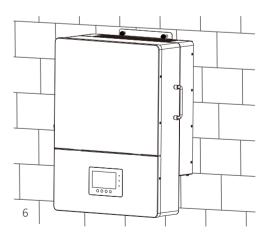
The mounting steps are as below: (Use brick wall as example)


sure the depth of the holes is deeper than 50mm(2inches).

Step2. Install and tighten the expansion bolts into the holes. Then use the corresponding nuts and washers (packaged together with the expansion bolts) to install and fix the wall-mounting bracket on the wall.

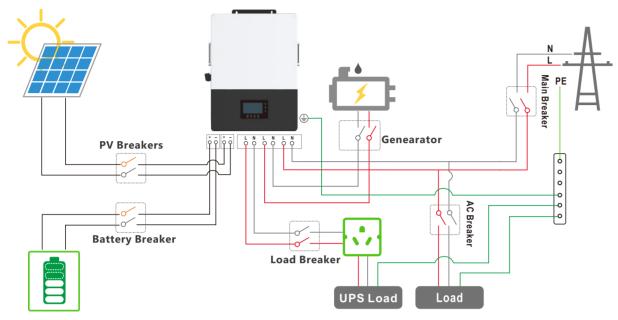
Step3. Hang the inverter onto the wall-mounting bracket and lock the inverter on the wall using 2 self-tapping screws on the top of the inverter.


For installation on wood studs

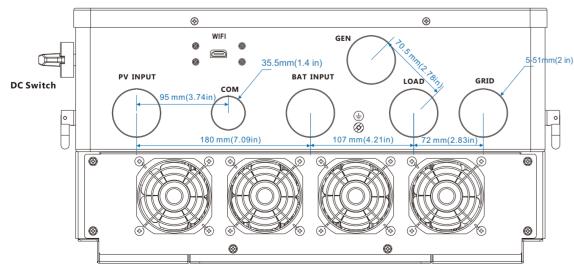

Fasten the mounting bracket on the studs with 4 wood screws, then hang the inverter onto the bracket and lock the inverter on the wall with 2 self-tapping screws.

Please note that the wood screws and self-tapping screws are not provided with the inverter. Installers need to prepare the screws before installation.

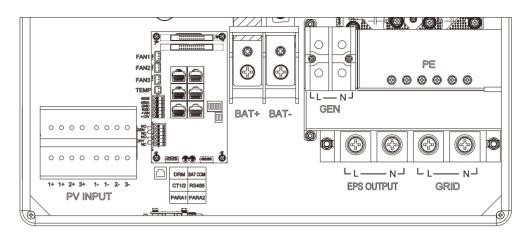
Step1. Mark the drill hole positions with the mounting bracket, then drill four48(5/16inch) diameter holes, making

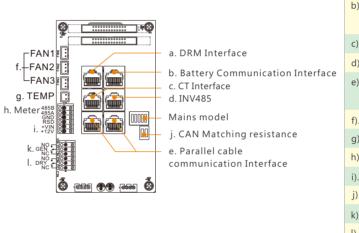


3.3 Connection Overview


3.3.1 System Connection

The system connection diagram is as below.


Please prepare the breakers before connecting, breakers selection recommendation for both DC and AC


Inverter model	12К
PV Breakers(2Px4)	MPPT1 string 1 : 600V/20A MPPT1 string 2 : 600V/20A MPPT2: 600V/20A MPPT3: 600V/20A
Battery Breaker(2P)	100V/300A
Main Breaker(2P)	200A/240Vac when ups is used for whole home backup 100A/240Vac when ups is used for partial load backup
Load Breaker(2P)	200A/240Vac when ups is used for whole home backup 100A/240Vac when ups is used for partial load backup
Geneartor breaker	100A

Overview of Connection Ports

Overview of the cable box

3.4 PV Connection

The PV connection of this hybrid inverter is the same as that af a traditional on-grid solar inverter (string inverter).

WARNING

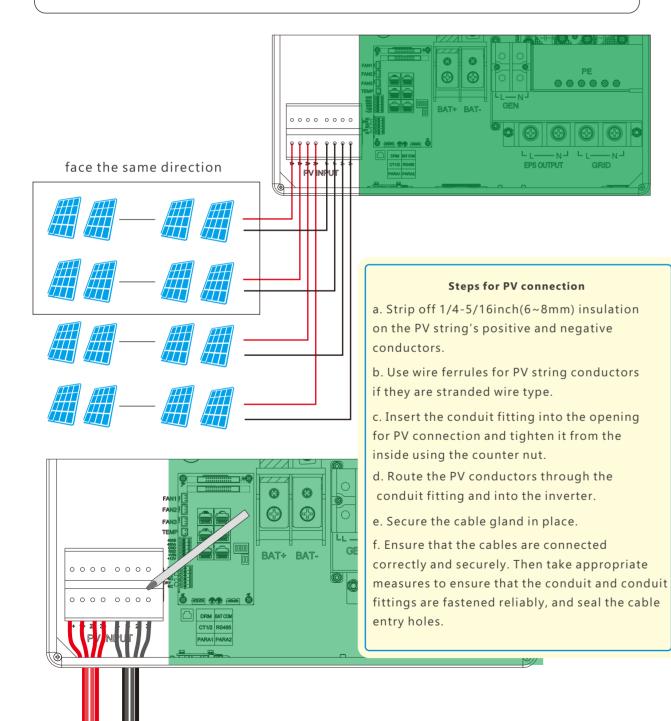
* Please double check the lowest a mbient temperature of the installation location. The rated Voc on solar panel nameplate is obtained at 25°CAs the ambient temperature drops, the Solar panel Voc increases.Please ensure the Maximum solar string voltage corrected at the lowest temperature does not exceed the inverter's maximum input voltage of 550V.

Cable Requirement:

Cable Size	Miniı
10-8 AWG(5-8 mm ²)	

a). DRM port(Applied only in AU) b). Battery communication port(CAN&RS485) please check Chapter 3.5.2 for Pin definition c). CT Interface: please check Chapter 3.6.4 for CT connection d). INV 485: Debugging port e). Parallel communication port please check Chapter 3.9 for Parallel connection f). FAN1/2/3 g). TEMP: Connection for temperature sensor of lead-acid battery h). Meter 485B&485A: For Meter communication i). VIN/+12V: Connect a outside emergency switch on these 2 terminals j). CAN Matching resistance: Set DIP switch when use inverters in parallel k). GEN(NO, NC): connection for generator auto-start function l). DRY(NO,NC): reserved

mum Voltage


600V

NOTICE

1. The inverters have triple MPPTs. For MPPT1, users can connect two strings. For MPPT2 and MPPT3, users can connect one string.

2. When users connect 2 strings to MPPT1, make sure the two strings have the same quantity of solar panels. The inverter will limit the total MPPT1/MPPT2/MPPT3 input current to 25A/15A/15A automatically.

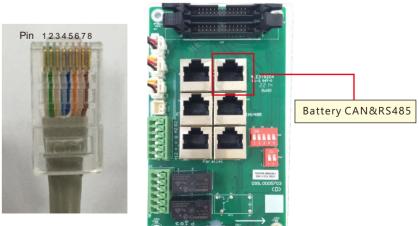
3. The inverter will limit the max solar input power to 18kW total.

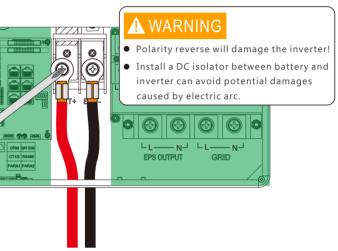
Battery Connection 3.5

3.5.1 Battery power cable connection

Cable Requirement:

Model	Cable Size	Minimum Voltage	Torque for cable connection	OT ring
12K	3/0-4/0 AWG(85-100 mm ²)	600V	20(N.M)	RNB100-10


Step 1: Strip 1/4-5/16inch(6-8mm) insulation from the cable end and crimp OT rings for the cable ends. Step 2: Route the battery power cable through the cable gland, connect positive to BAT+, negative to BAT-. Step 3: Secure the conduit fitting to the enclosure using the counter nut. Step 4: Fasten the OT rings of battery positive and negative cables to the lugs according to the markings. Step 5: Fix the cable gland in place.


 (\bigcirc) (O)ďΟ 1+ 1+ 2+ 3+ 1- 1- 2- 3-PV INPUT TÌT

3.5.2 Battery communication cable connection

Correct battery communication cable must be used to connect the battery to the inverter when users choose lithium-ion battery type. Please select 'Lead-acid ' type if the lithium battery can not communicate with the inverter. The battery communication port on inverter is an Rj45 socket, Pin for the RJ45 plug of the communication cable is as below. Make the communication cable according to the below inverter Pin and the correct pinout of communication port on battery. The inverter supports both CAN and RS485 communication.

Pin	Description
1	NC
2	GND
3	NC
4	BAT CAN H
5	BAT CAN L
6	NC
7	BAT RS485 A
8	BAT RS485 B

After battery power cable and communication cable connection, users need to enter Advanced setting and choose Battery type and brand on the inverter LCD

Basic	Grid type 230V	∕ ∽ Gi	ird Freq	50 ~ S	Set
Charge	Grid regulation 5:VD	E0126 ~ Re	econnect time(S)	
	HV1 V S	HV2	V SH	V3 V	S
Discharge	LV1 V S	LV2	S L\	/3 V	S
Advanced	HF1 Hz S	HF2	Hz S H	F3 Hz	S
Advanced	LF1 Hz S	LF2	Hz S LI	F3 Hz	S
Debug	Battery type 1:Lead	d-acid ~		Set	
Device info.	Lithium brand 6:Lux	~	Bat capacity	/(Ah)	^

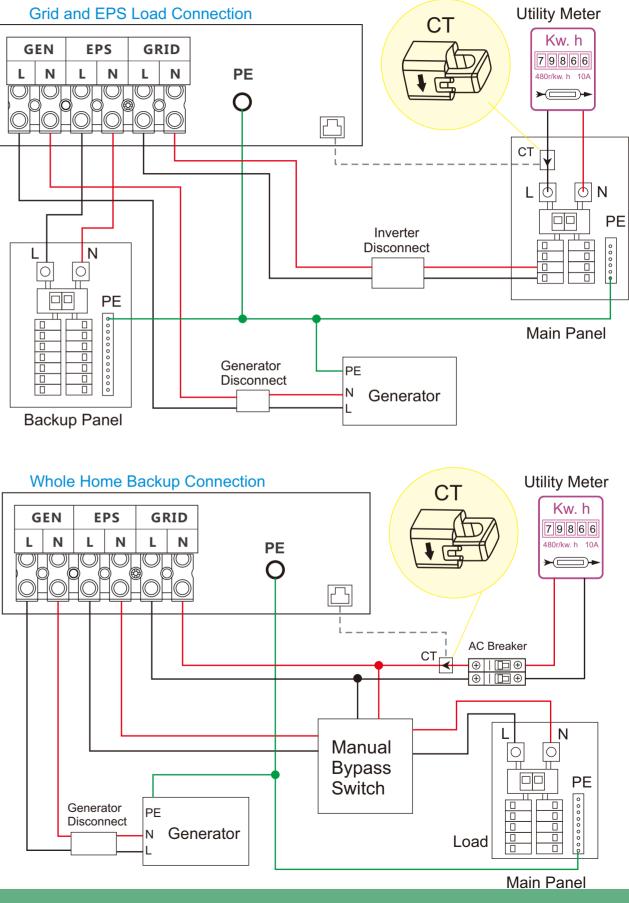
Basic	Charge first(PV) 🗸 Set	
	Time 1 Charge first power(kW)]
Charge	Time 2 Stop charge first SOC(%)	
Discharge	Time 3 Stop charge first Volt(V)]
	Lead-acid	1
Advanced	Absorb voltage(V) Float voltage(V) Set	
Debug	Start derate Volt(V)	^
Device info.		~

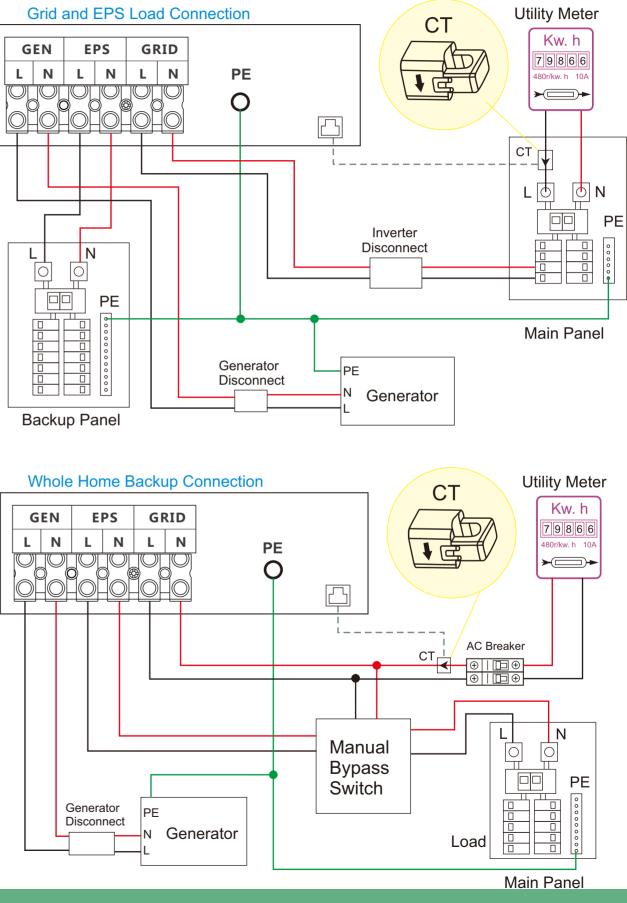
NOTICE

For Li-ion battery

1. Please make sure the lithium-ion battery to be used is compatible with Luxpower inverters. Please contact your distributor for an updated battery compatible list.

2. If you are using multiple battery modules with the inverter, the inverter communication cable must be connected to the master battery. Please check with your battery supplier for battery master and slave settings.


For Lead-acid battery


1. The temperature sensor for the lead -acid battery is optional. If you need it, please contact the distributor for purchasing.

2. There are three stages for lead-acid battery charging. For charging/discharge related parameters, please check the charge /discharge settings page.

3.6.2 Grid and EPS load connection

If the busbar rating in the main panel can meet the NEC705.12(B)(3) requirements, Otherwise, a Line side-connection can be made to avoid an expensive main panel upgrade.

12

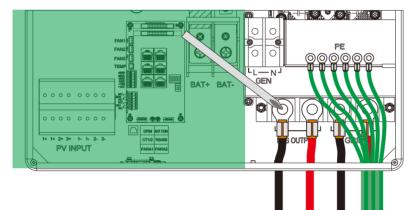
3.6 Grid&EPS load Connection

3.6.1 Grid type and regulation selection

The inverter has passed the main grid-connection regulations NRS097:

Basic	Grid type 230V ~ Gird Freq 50 ~ Set
	Grid regulation 3: SouthAfrica v Reconnect time(S)
Charge	HV1VS HV2VS HV3VS
Discharge	LV1 V S LV2 V S LV3 V S
Advanced	HF1 Hz S HF2 Hz S HF3 Hz S
Advanced	LF1 Hz S LF2 Hz S LF3 Hz S
Debug	Battery type 1:Lead-acid V Set
Device info.	Lithium brand 6:Lux v BAT capacity(Ah)

3.6.3 AC cable connection


Cable Requirement:

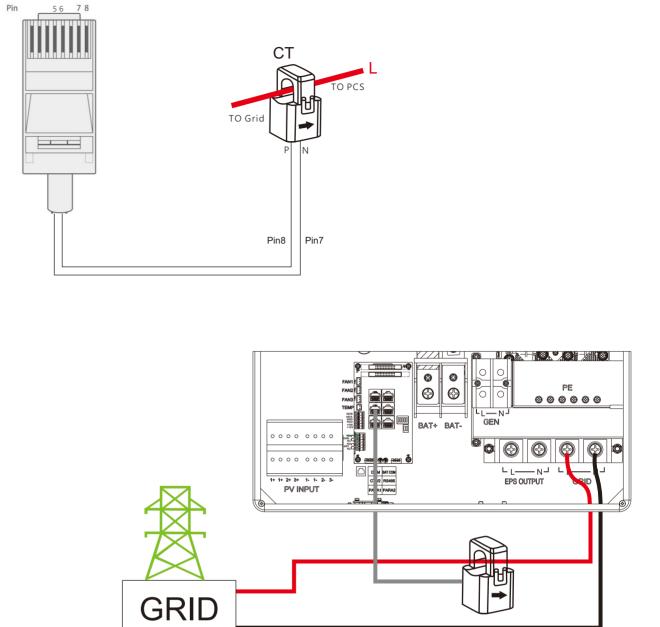
Current	Cross-section	Cable Diameter	Minimum Voltage	Torque for cable connection	OT ring
100A	3-2AWG(25-35mm ²)	6-7mm	600V	41(N.M)	RNB38-10S
200A	2/0-3/0AWG(70-85mm ²)	9-10mm	600V	41(N.M)	RNB100-10

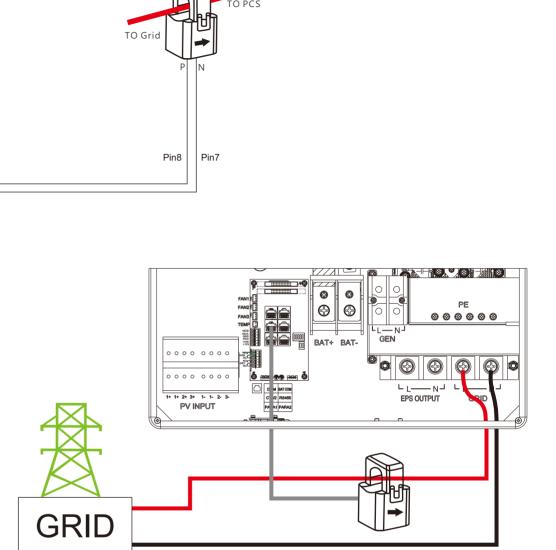
a. Strip off 5/16-3/8inch(8~10mm) insulation sleeve on the cables.

- b. Use wire ferrules if the cables are made of fin stranded wires.
- c. Secure the conduit fitting to the enclosure using the counter nut of the fitting.
- d. Fasten the grid and EPS load cables to the terminal block in accordance with the markings.
- e. Secure conduit to the conduit fitting.

f. Check that the cables are connected correctly and securely, then take appropriate measures to ensure that the conduit and conduit fitting are secured reliably, and seal the cable entry holes.

3.6.4 CT/Meter Connection


To measure the power imported from and exported to the grid, a pair of CT or one triphase meter must be installed at the service entry point in or near the main service panel. We standardly supply 1 CT for one inverter.


CT Port Pin definition

The CT interface for 1 CT connection is a RJ45 port, We have made a RJ45 plug on those 1 CT in advance, so you can connect it to the port directly.

Pin	Description
1-4	reserve
5	reserve
6	reserve
7	CT1N
8	CT1P

Please refer to the above connection diagram for the correct positions of CTs. The arrows on the CTs must point to inverter side.

CT Clamp Ratio

The Luxpower inverters support two ratios of CT clamp- 1000:1 and 3000:1. The CT ratio of the CTs in the accessory bag is 1000:1. If you are using a 3rd party CT, please ensure the CT ratio is either 1000:1 or 3000:1, and then select the correct CT ratio setting in the inverter monitor page or on the inverter LCD.

Extend CT clamp cable

The CT wires can be extended with a common ethernet cable if the length is not enough. An RJ45 adapter is needed for the extension. The CT wires can be extended up to 300ft(around 100m).

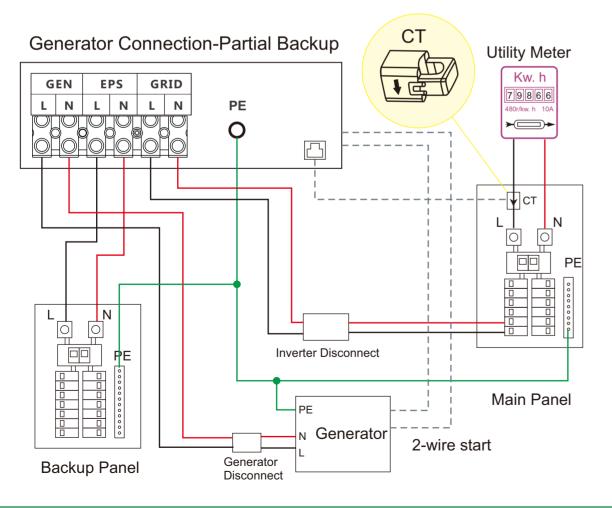
RJ45 PV input Meter or CT Basic MODBUS addr Meter type Charge Vpv start (V) CT ratio Discharge EPS output Offgrid output without Battery Advanced Seamless switch Charge last AC couple CT direction reversed Debug Smart load FAN1 Device info. PV Arc 🗸 PV Arc fault clear FAN2 FAN3 C 8 TEMP Meter 485B 0000

Set \sim V Micro-grid Set RSD disable Set

Meter Connection

Currently only EASTRON SDM630-Modbus meters can be used. If you need to use a meter for import/export detection instead of CTs, you need to connect it to the Meter 485A and 485B terminals on the inverter, please contact Luxpowertek for detailed instructions.

Working with Generator 3.7

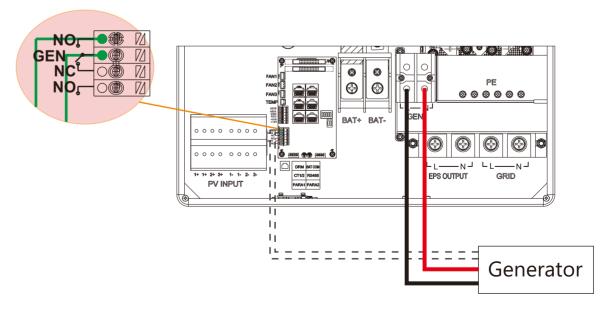

🙆 📾 🚓 📾


GEN

DRY

3.7.1 Generator system connection

This hybrid inverter can work with generator. There are Gen ports on the inverter for generator connection.



When the generator is started, all the loads connected to EPS will be supplied by the generator. Meanwhile

the battery will be charged. The pass-through relay on the generator port is 90A. When the generator is on, please ensure the total load and charge current will not exceed 90A. The generator start signal shall be connected to the COM board GEN(NO,NC port) if users want to start the

generator remotely.

(16)

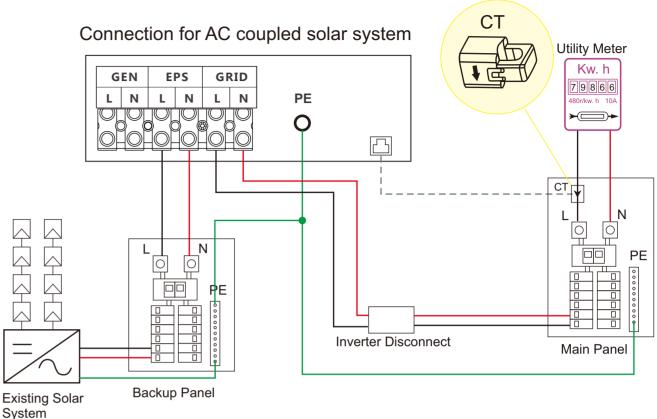
Generator Startup and Stop settings 3.7.2

Basic	Generator
	Charge current limit(A) Gen rated power(kW) Set
Charge	Charge start Volt(V) Charge start SOC(%)
Discharge	Charge end Volt(V) Charge end SOC(%)
Advanced	
Debug	
Device info.	^

It depends on the Bat charge control setting, The system will use either battery SOC or battery voltage to judge determing whether system needs to start or stop the generator.

Generator Start Conditions

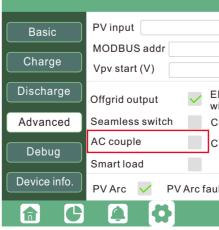
When utility fails and When battery is discharged to cut-off settings or there is force charge request from battery.


or when the battery voltage or SOC is lower than the Generator Charge start Volt/SOC settings,

Generator Stop Conditions

when battery voltage or SOC is higher than Charge end Volt/SOC settings value.

AC Coupling Installation Connection 3.8

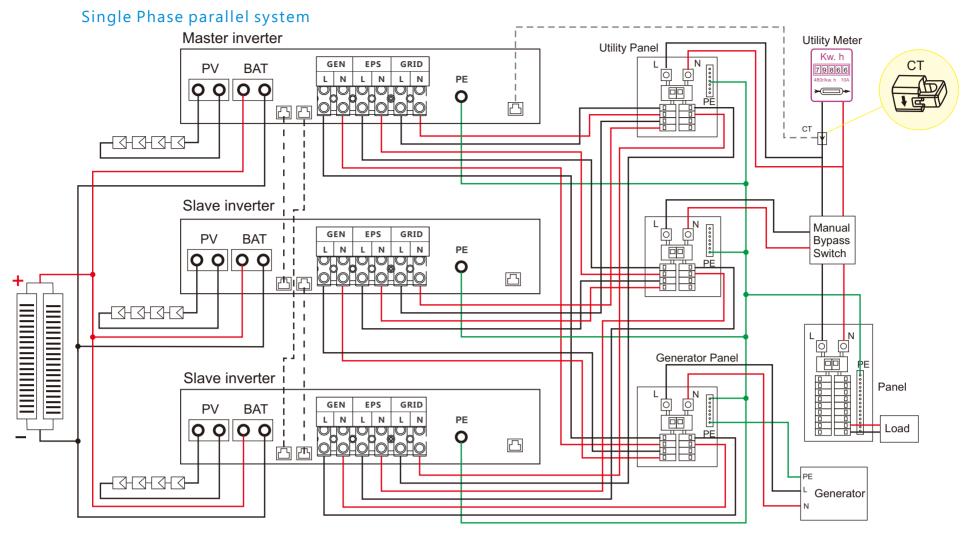

The inverter supports AC coupling connection with the existing grid-interactive solar system. The existing solar system is connected to the inverter's EPS port.

When the grid is on, the EPS terminal is connected to the grid terminal inside the inverter by a passthrough relay. In this case theso the hybrid inverter will bypass the interactive inverter AC to grid in this situation. The spec of the passthrough relay is 200A.

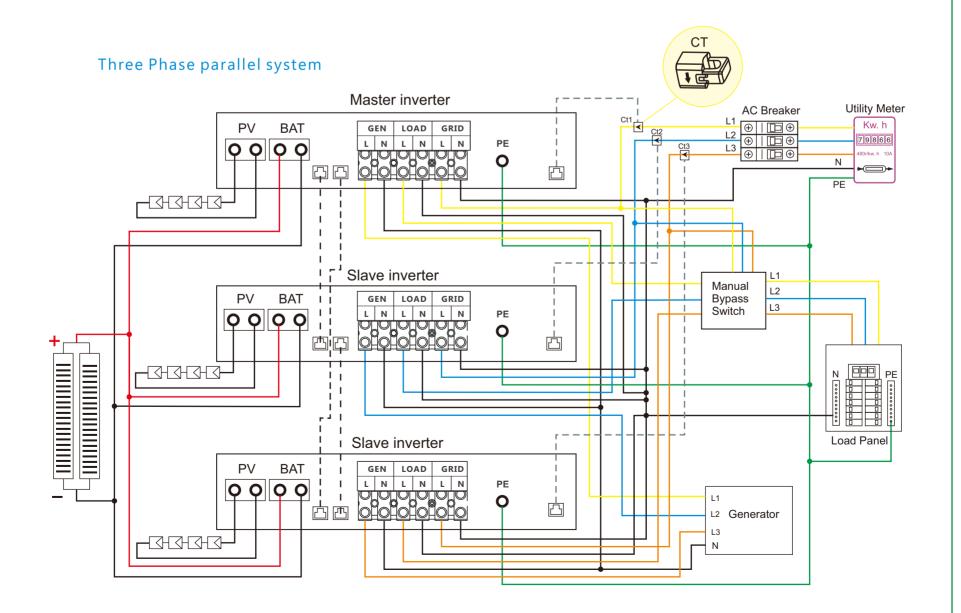
When the grid is off, the hybrid inverter will work as a power source for the grid interactive inverter to synchronize and feed power to the micro-grid. The loads will be first supplied by solar power. If solar panels are generating more power than load consumption, the excess solar power will be stored in the battery. When solar power exceeds the sum of load power and max battery charging power, e.g. when the battery is nearly full. The inverter will signal the grid interactive inverter to reduce power via the frequency shifting power reduction mechanism, thus to maintain the balance of generation and consumption of the microgrid system.

Users need to enable the AC coupling function when they connect their existing on grid system to the EPS terminal

✓ Meter or CT ✓	Set
Meter type ~	
CT ratio ~	
PS output 📈 Micro-grid 📗	Set
harge last RSD disable	
T direction reversed	
It clear Set	~

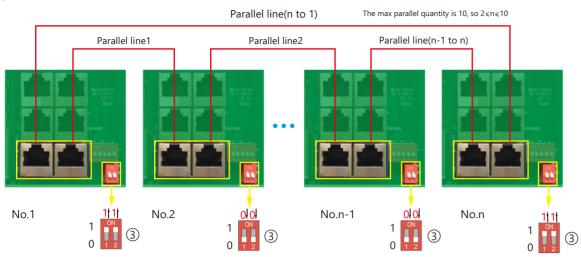

3.9 Parallel System Connection

19


3.9.1 Connection for paralleling system

The hybrid inverter supports parallel connection to expand power and energy capacity to suit different using scenarios. Up to 10 units can be paralleled to reach a capacity of 120kW. Wiring diagram is as below,

The manual bypass switch connects loads to EPS panel for default. When inverters fail, users can switch the loads to utility.



Please put the 2-bit CAN balancing resistor switch to ON status for the first and end inverter of the daisy chain loop.

20

Please put the CAN communication PIN to on status for the first and the end inverter

If the parallel cable is not enough or long enough, please make a straight pin to pin cable

Settings for paralleling function in monitor system

1. Set up monitoring for the system, add all dongles to one station. Users can login to visit the monitoring system, Configuration->Plant Management->Add a dongle to add dongles.

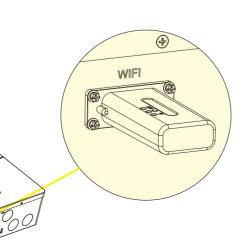
		🕜 Monitor	r 🕕 Data	🔎 Configuratio	n 📮 Ove	erview 📄 M			
Stations		Add Sta	tion					Search by station r	name X
Datalogs		Plant name	Installer	End User	Country	Timezone	Daylight saving time	Create date	Action
Inverters	1	Genesis		Aspergo Install	South Africa	GMT+2	No	2019-03-14	Plant Management 🔻
lleere	2	Butler Home	Elangeni	johnbutler	South Africa	GMT+2	No	2019-03-25	Plant Management 🔻
Users	3	Office			South Africa	GMT+2	No	2019-06-03	Plant Management 🔻
	4	Cronje Home	Broomhead	cronje	South Africa	GMT+2	No	2019-07-16	Plant Management 🔻

2. If the system shares a single battery bank, enable the shared battery function otherwise disable the shared function.3. Set the system as a parallel group in the monitor system

		🕝 Monit	tor	🕕 Data	喿 Confi	guration		Overview	🗋 Mainta	ain	Aspe	ergo Us	ser Cente	er
Stations Overview	:	Station Nar	ne]							Search by	inverter SN	×	
Device Overview		Serial number	Status	Solar Power	Charge Power	Discharge Pow	Load	Solar Yielding	Battery Dischar	Feed Energy	Consumption E	Plant name	Parallel	Action
	1	0272011008	< Normal	228 W	42 W	0 W	182 W	215.3 kWh	39.6 kWh	0 kWh	551.2 kWh	Dragonview	A-1	Parallel
	2	0272011011		35 W	32 W	0 W	0 W	158.7 kWh	21.1 kWh	0 kWh	160.5 kWh	Dragonview	A-2	Parallel
	3	0272011012		1 kW	129 W	0 W	1 kW	170.3 kWh	49.9 kWh	0 kWh	434.5 kWh	Dragonview	A-3	Parallel
	4	0272011017		79 W	48 W	0 W	106 W	99 kWh	85.6 kWh	0 kWh	257.1 kWh	Dragonview	A-4	Parallel

Ð

10


Please contact your inverter supplier for more detailed guidance for paralleling system

3.10 Monitor System Setup

3.10.1 Wifi/GPRS/4G/WLAN dongle connection

Users can use a WiFi/ WLAN /4G /2G dongle to monitor their inverter, and view the monitoring data on a computer or smart phone remotely.

To view data on a smartphone, please download the LuxPowerView APP from the Google Play or Apple APP store, then login with their user account.

3.10.2 Setup the monitor system

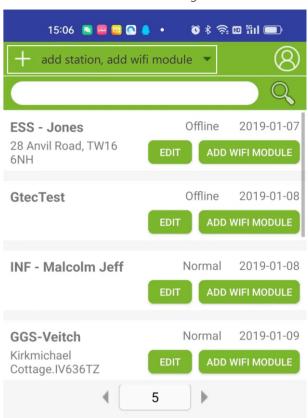
1. Sign up an account on the mobile phone APP or Website

The "customer code" is a code we assigned to your distributor or installer. You can contact your supplier for their code.

	* E-mail
	*Language English V
8 User name	* Tel number
Pass word	* Station name
Remember username Auto login	* Nominal power (W)
	* Daylight saving time
LOGIN	* Income formula (kWh) RMB (□)▼
	* Continent Asia V
- or	* Region East Asia 🔻
	* Country China V
	* Time zone GMT + 8 🔻
REGISTER	* Address
WIFI MODULE CONNECT	* Customer code
	* Datalog serial number
PRODUCT WARRANTY LOCAL CONNECT	* PIN
Version 1.7.1	REGISTER

3.10.3 Set homewifi password to dongle

1. Connect your mobile phone to the "BAxxxxxxx" wireless network where "BAxxxxxxxx" is the serial number of the WiFi dongle.


2. Click the "WiFi MODULE CONNECT" button on the APP

3. Select the home WiFi that the WiFi dongle is to be connected to and enter the WiFi's password. And then click "HomeWifi Connect". The WiFi dongle will restart and try to connect to our server automatically.

4. Check the LEDs' status on the WiFi dongle. The middle light should be solidly lit when the WiFi dongle connects to our server successfully.

	0	
WI-FI		
19520257 aining address	((*	8 luxpower
power	A 🛜	Pass word
xpowertek_5g	A 🔶	Remember username Auto logi
xpowertek	A 🛜	
ninaNet-wG49	A 🛜	LOGIN
MCC-BAKR	A 🔶	
F-WIFI	≙ 🛜	-or-
hinaNet-EWP	A 🛜	
xpower_5G	≙ 🛜	
		REGISTER
		WIFI MODULE CONNECT
MORE SETTINGS	DONE	PRODUCT WARRANTY LOCAL CONN
		Version 1.7.1

5. Now you can disconnect your mobile phone from the "BAxxxxxxx" wireless network. Login on the APP with your account, you'll find the inverter information already appears. Now you'll be able to monitor and control the inverter remotely on any smart phone or computer that has an Internet connection.

2. Create station and add dongle for the station

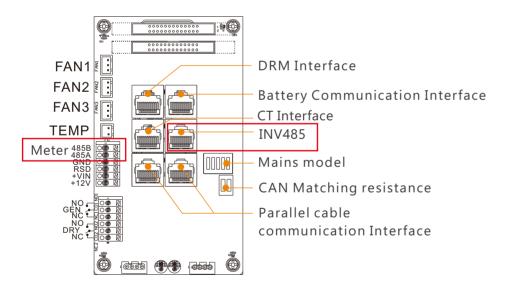
Please download the following guides for setting up WiFi dongle and monitoring account at

Document Reference:

1. Wifi Quick Guidance

Quick guidance for setting connection of WiFi module to home WiFi, you can also find a printed version in the packaging of the WiFi module.

2. Monitor system setup for Distributors and Monitor system setup for endusers Account registration, the description of each items and parameters, setting parameters


3. Lux_Monitor_UI_Introduction Introduction of monitor interface

3.10.4 Third party RS485 communication

Meter 485B&485A: are used when the Meter is not connected. These two pins can be used to communicate with the inverter using our Rs485 modbus protocol.

INV485: This interface is shared with the WIFI module. If the WIFI module is not in use, users can use this interface to communicate with the inverter.

Please contact your distributor to get the protocol for third party APP development.

Pin	Description			
1	485B			
2	485A			
3-8	/			

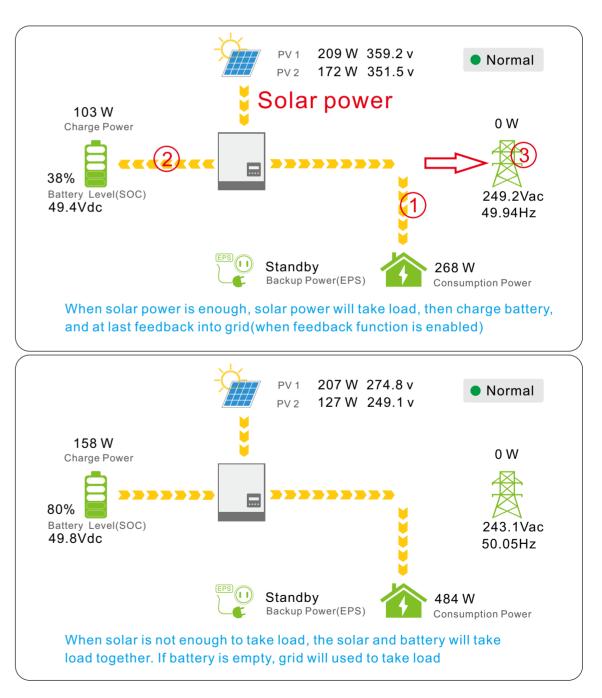
4. Operation Guide

4.1 Operation Mode and Function

The inverter has different working modes to meet customers' various demands, The working modes are as below:

4.1.1 Self-usage Mode (Default)

In this mode, the priority order of load supply sources is Solar>Battery>Grid. The priority order of solar power usage is Load>Battery>Grid.


Application Scenarios

Self consumption mode will increase the self consumption rate of solar power and reduce the energy bill significantly

Related Settings

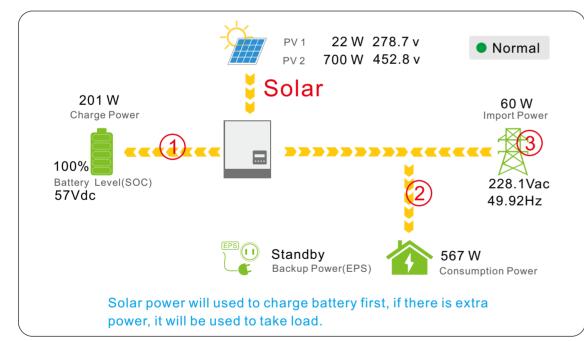
Effective when Charge Priority , AC Charge, and Forced discharge are disabled

Example

24

4.1.2 Charge First Mode

The priority order of solar power usage will be Battery >Load >Grid. During the Charge Priority time period, load is first supplied with grid power. If there is excess solar power after battery charging, the excess solar power will take a load together with grid power.

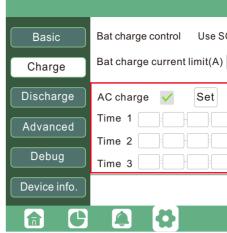

> Application Scenarios

When users want to use solar power to charge batteries, grid power is used to supply loads.

Related Settings

Basic	Charge first(PV) 🗸 Set
	Time 1 Charge first power(kW)
Charge	Time 2 Stop charge first SOC(%)
Discharge	Time 3 Stop charge first Volt(V)
	Lead-acid
Advanced	Absorb voltage(V) Float voltage(V) Set
Debug	Start derate Volt(V)
Device info.	

> Example


4.1.3 AC Charge Function

Users can charge batteries with grid power when electricity prices ar cheap, and discharge battery power to supply load or export to the grid when electricity prices ar high.

> Application Scenarios

When users have a Time of Use(TOU) rate plan.

Related Settings

4.1.4 Grid peak-shaving Function

Basic	Grid peak-shaving 🔽 Peak-shaving power(kW) 🚺 Set
Charge	Time 1 Stop peak-shaving SOC
Discharge	Time 2 Stop peak-shaving Volt
	Smart load
Advanced	Start PV power (kW) Set
Debug	Smart load start Volt(V) Smart load start SOC(%)
	Smart load end Volt(V) Smart load end SOC(%)
Device info.	<u>^</u>

4.1.5 Smart load Function

Basic	Grid peak-shaving Veak-shaving power(kW)
Charge	Time 1 Stop peak-shaving SOC
Discharge	Time 2 Stop peak-shaving Volt
	Smart load
Advanced	Start PV power (kW) Set
Debug	Smart load start Volt(V) Smart load start SOC(%)
	Smart load end Volt(V) Smart load end SOC(%)
Device info.	A
Basic	PV input Meter or CT Set
Basic	PV input Veter or CT Set
Basic Charge	
	MODBUS addr Meter type
Charge	MODBUS addr Meter type Vpv start (V) CT ratio Offorid output EPS output Micro-grid Set
Charge Discharge Advanced	MODBUS addr Meter type Vpv start (V) CT ratio Vffgrid output EPS output without Battery Micro-grid Set
Charge Discharge	MODBUS addr Meter type Vpv start (V) CT ratio Offgrid output EPS output without Battery Micro-grid Set Seamless switch Charge last RSD disable
Charge Discharge Advanced	MODBUS addr Meter type Vpv start (V) CT ratio Offgrid output EPS output without Battery Micro-grid Set Seamless switch Charge last RSD disable AC couple CT direction reversed

SOC % 🗸	Use Bat V	Set
	,	
AC charg	e power(kW)	
Stop AC o	charge SOC(%)	
Stop AC o	charge Volt (V)	
		~

• Grid peak-shaving & Grid peak-shaving power(kW): Is used to set the maximum power that the inverter will draw from its grid power.

 Smart Load: This function is to make the Gen input connection point as an load connection point, if you enable it, inverter will supply power to this load when the battery SOC and PV power is above a user setup value. e.g. Smart load start SOC=90%, Smart load end SOC=85%, Start PV power=300W, it means: When the PV power exceeds 300W, and the battery system SOC gets to 90%,the Smart Load Port will switch on automatically to supply the load which is connected on this side. When the battery reaches SOC<85% or PV power<300w, the Smart Load Port switch off automatically.

Note:

If you enable the Smart load function, it's forbidden to connect the generator at the same time, otherwise the device will be damaged!

4.2 LCD Display

Users can view the inverter's running status, real time power, daily and accumulated energy information conveniently on the inverter's LCD. In addition to the above information, users can also check alarm and fault records on the display for troubleshooting.

4.2.1 Viewing information and alarm/fault record

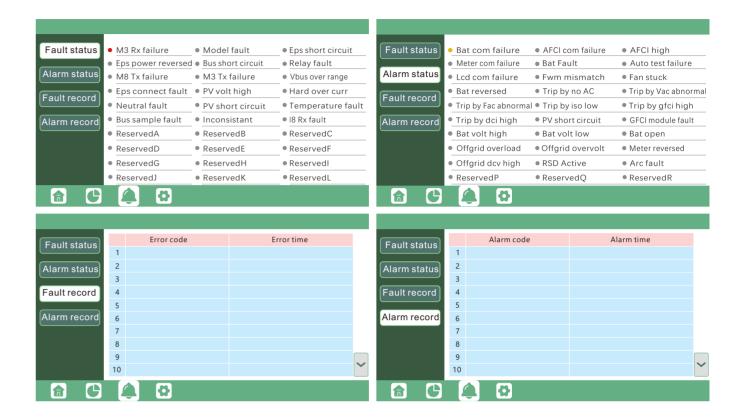
Home Page

Touch the screen to light it up if it's in sleep mode. The Home page will appear on the display. Users will see a system overview diagram along with the real time information of each component, such as battery SOC, battery charging/discharging power, grid import/export power, load power, etc. On the right part of the screen, users can check daily and accumulated solar energy, battery charged/discharged energy, grid imported/ exported energy, as well as load consumption.

> Detailed System Information

Click on the pie icon at the bottom of the screen and you'll be able to view the detailed real time solar information, battery information, grid information and EPS output information.

	Vbat	Ibat	
Solar	Pchg	Pdischg	
Battery	Vbat_Inv	BatState	
Dattery	SOC/SOH	CycleCnt	
Grid	Vchgref	VcutVolt	
	I maxchg	I maxdischg	
UPS	Vcellmax	Vcellmin	
	Tcellmax	Tcellmin	
Other	BMSEvent1	BMSEvent2	
	Echg_day	Edischg_day	
	Echg_all	Edischg_all	
		Func	
Solar	Vups	Fups VupsL2N	
Solar		Fups VupsL2N Sups	
	Vups VupsL1N	VupsL2N	
Solar Battery	Vups VupsL1N Pups	VupsL2N Sups	
Solar	Vups VupsL1N Pups PupsL1N	VupsL2N Sups SupsL1N	
Solar Battery	Vups VupsL1N Pups PupsL1N PupsL2N Eups_day EupsL1N_day	VupsL2N Sups SupsL1N SupsL2N Eups_all EupsL1N_all	
Battery Grid UPS	Vups VupsL1N Pups PupsL1N PupsL2N Eups_day	VupsL2N Sups SupsL1N SupsL2N Eups_all	
Solar Battery Grid	Vups VupsL1N Pups PupsL1N PupsL2N Eups_day EupsL1N_day	VupsL2N Sups SupsL1N SupsL2N Eups_all EupsL1N_all	
Solar Battery Grid UPS	Vups VupsL1N Pups PupsL1N PupsL2N Eups_day EupsL1N_day	VupsL2N Sups SupsL1N SupsL2N Eups_all EupsL1N_all	
Solar Battery Grid UPS	Vups VupsL1N Pups PupsL1N PupsL2N Eups_day EupsL1N_day	VupsL2N Sups SupsL1N SupsL2N Eups_all EupsL1N_all	


Solar	Vpv1	Р	'pv1	
Solar				
Battery	Vpv2	Р	pv2	
Grid	Vpv3	Р	pv3	
UPS	Epv1_day	E	pv1_all	
	Fault day	-	a	
Other	Epv2_day	E	pv2_all	
	Epv3_day	5	pv3_all	
	Epv5_day	E	pv5_all	
	🎒 🖗			

	Vgrid	F	grid	
Solar	VgridL1N	١	/gridL2N	
Battery	Vgen	F	gen	
Dattery	Pimport	Р	Pexport	
Grid	Pinv	Р	Prec	
	Pload			
UPS	Eimport_day	E	export_day	
	Eexport_all	E	export_all	
Other	Einv_day	E	rec_day	
	Einv_all	E	rec_all	
	Eload_day	E	load_all	

	Status	:	StatusPre	
Solar	SubStatus	:	SubStatusPre	
Battery	FaultCode		AlarmCode	
Dattery	Vbus1	,	Vbus2	
Grid	VbusP	,	VbusN	
	то		T1	
UPS	T2		Т3	
	OCPCnt		GridOnOffSWCnt	
Other	InnerFlag	1	RunTrace	
	NoChgReason	I	NoDischgReason	
	ExitReason1	1	ExitReason2	

Fault/Alarm Information

Touching the bell icon at the bottom of the screen, you'll see all the current and historical fault & warning information on this page.

4.2.2 Setting Parameters

Clicking on the gear icon at the bottom of the screen, you'll get into the parameter setting page of the inverter.

a. Basic settings

Basic	Standby: Restart inverter Reset
Charge	Feed-in grid V Feed-in power(kW) Set
Discharge	Fast zero export 🗹
Advanced	
Debug	
Device info.	

• **Feed-in Grid**: Is for users to set a zero export function. If exporting solar power is not allowed, users need to disable the "Feed-in Grid" option. If users' utility meter is tripped with even a little solar export, "Fast zero export" can be enabled thus The export detection and adjustment will take place every 20mS, which will effectively avoid any solar power being exported. If export is allowed, users can enable "Feed-in Grid" and set a maximum allowable export limit in "Feed-in Power" (kW).

- Standby: Is for users to set the inverter to normal status or to standby status. In Standby status, the inverter will stop any charging or discharging operation, as well as solar-feed-in.
- **Restart inverter**: Restart the system, please note the power maybe interrupted when restarted.

b. Charge setting

Deria	Generator	
Basic	Charge current limit(A) Gen rated power(kW) Set	t
Charge	Charge start Volt(V) Charge start SOC(%)	
Discharge	Charge end Volt(V) Charge end SOC(%)	
Advanced		
Debug		
Device info.	·	•

• Bat charge control: Users can decide to use SOC or BatV to control charge and discharge logic depending on battery type.

- Bat charge current limit(A): users can set Max charge current.
- AC Charge: Utility charge configuration If users want to use grid power to charge their batteries, then they can enable "AC Charge", set time periods when AC charging can happen, AC Charge power(kW) to limit utility charging power, and "Stop AC Charge SOC(%)" as the target SOC for utility charging. "Stop AC Volt(V)" as the target battery voltage for utility charging.

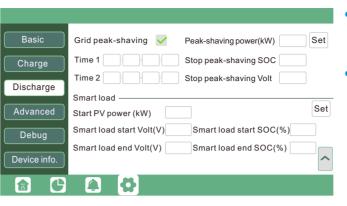
Charge first: PV charge configuration When using enable Charge first, PV will charge the battery as a priority, set time periods when PV charge can happen, charge first power(kW) to limit PV charge power, and "Charge first SOC(%)" as the target SOC for PV charge first. "Charge first Volt(V)" as the target battery voltage for PV Charge first.

Lead acid: When using Lead-acid battery, you need to set parameters in these programs, Follow the battery manufacturer's recommendation.

Generator

Bat charge current limit(A): Set the Max. battery charge current from the Generator. The Generator will start charging according to the Charge start Volt/SOC, and stop charging when the battery voltage or SOC reaches the Charge end Volt/SOC value.

Gen rated power: Maximum allowable power from generator.


c. Discharge setting

Basic	Bat discharge control Use SOC % 🖌 Use Bat V 📗 Set
	Discharge current limit(A) Discharge start power(W)
Charge	On-grid EOD(%) Off-grid EOD(%)
Discharge	On-grid Cut-off(V) Off-grid Cut-off(V)
Advanced	Forced discharge 🖌 Set
	Time1 Discharge power(kW)
Debug	Time 2 Stop discharge SOC(%)
Device info.	Time 3 Stop discharge Volt(V)

• Bat discharge control

You can choose "Use SOC %" or Use Bat V" to control the battery discharge state


- Discharge current limit(A): The Max. discharge current from battery
- Discharge start power(W): The Min. value can be set to 50. When the inverter detects the import power is higher than this value, battery start discharging, otherwise battery will keep standby
- On-grid EOD(%) and Off-grid EOD(%) /On-grid Cut-off(V) and Off-grid Cut off(V): End of discharge SOC/Cut off voltage in on-grid and off-grid condition respectively.
- Forced discharge: Settings for battery force discharge within certain time period. In the preset time period, the inverter will discharge battery at the power set by "discharge power", until battery SOC or voltage reaches "Stop discharge "value.

Note: If you enable the Smart load function, it's forbidden to connect the generator at the same time, otherwise the device will be damaged!

d. Advanced settings

Advanced settings are mainly done by the installer after installation.

The supported CT ratio is 1000:1 and 3000:1. The default CT ratio is 1000:1. If a 3rd party CT is to be used, please ensure its CT ratio is either 1000:1 or 3000:1, and set it accordingly. the battery brand in the Lithium brand drop down list.

• Meter type: Please select it according to the meter that's to be installed

- Grid peak-shaving & Grid peak-shaving power(kW): Is used to set the maximum power that the inverter will draw from its grid power.
- **Smart Load:** This function is to make the Gen input connection point a load connection point, If you enable it, the inverter will supply power to this load when the battery SOC and PV power is above a user setup value. e.g. Smart load start SOC=90%, Smart load end SOC=85%, Start PV power=300W, it means: When the PV power exceeds 300W, and the battery system SOC gets to 90%, the Smart Load Port will switch on automatically to supply the load which is connected on this side. When the battery SOC<85% or PV power<300w, the Smart Load Port will switch off automatically.

- Grid type: You can choose by yourself,230V
- **Grid regulation**: Please choose SouthAfrica or General
- Battery type: No battery, lead-acid or lithium-ion.
- If lead-acid battery is selected, please input correct battery capacity
- If lithium-ion battery is selected, please choose the battery brand in the Lithium brand drop down list.
- Offgrid output: It is for users to set if the inverter provides backup power or not when the grid is lost. If users want the load to be seamlessly transferred to the inverter backup power, "Seamless switch" must be enabled. If customers don't have a battery installed yet, but still wish to have inverter backup power with only solar panels connected, "PV Grid Off" can be enabled to use solar power to supply load when the grid fails or load-shedding happens. Microgrid: only needs to be set when the generator is connected to the inverter's grid port. With this option enabled, the inverter will use AC power to charge the battery and won't export any power through the grid port if AC power is present at the inverter's grid port.
- Charge last: When users want to us solar power in the order of loads -- grid export -- battery charging.
- AC couple: Enabled when you want to use the inverter as an AC coupled model.
- CT direction reversed: When the CT is installed in the wrong direction the installer can modify it by selecting it.Thereis no need to reconnect. in the order of loads -- grid export -- battery charging.

4.3 Start-up and shut down the inverter

4.3.1 Start up the inverter

Step1. Turn on the battery system first turn on the DC breaker between the battery and inverter.

Step2. Make sure the PV voltage of the strings is higher than 120V, and check if the inverter works in PV charge or PV charge back-up mode.

Step3. Make sure steps 1 and 2 above work properly before turning on the grid power or generator breaker, and check if the inverter can go to bypass mode and on-grid mode normally.

4.3.2 Shut down the inverter

Danger: Do not disconnect the battery, PV and AC input power under load.

If there is an emergency issue, and you have to shut down the inverter, please follow the steps as below.

Step1. Turn off the Grid breaker of the inverter.

Step2. Switch off the load breaker.

Step3. Turn off the PV breaker and then the battery breaker, waiting for the LCD to go off.

5. Troubleshooting & Maintenance

5.1 Regular Maintenance

• Inverter Maintenance

a. Check the inverter every 6 months or 1 year to	b. Check the inverter every 6 months to verify if
verify if there are damages to cables, accessories,	the operating parameters ar normal and there is
terminals and the inverter itself.	no abnormal heating or noise from the inverter.

c. Check the inverter every 6 months to confirm there is nothing that covers the inverter heat sink, if there is, shut-down the inverter and clear the heat sink.

• Battery Maintenance

Follow the manufacturer's requirements on maintenance. When you carry out these tasks on batteries, please make sure to fully shut-down the inverter for safety consideration.

5.2 LED Displays

LED	Display	Description	Suggestion
Create LED	Solid lit	Working normally	
Green LED	Flashing	Firmware upgrading	Wait till upgrading complete
Yellow LED	Solid lit ——	Warning, inverter working	Need troubleshooting
Red LED	Solid lit	Fault, inverter stop work	Need troubleshooting

5.3 Troubleshooting Based On LCD Displays

Once there is any warning or fault occurring, users can troubleshoot according to the LED status and the warning/fault information on the LCD.

1. Fault on the LCD

31

If the dot on the left of the fault item is red, it means the fault is active. When it is grey, it means the fault is deactive

Fault status	• M3 Rx failure	 Model fault 	• Eps short circuit
	 Eps power reversed 	• Bus short circuit	 Relay fault
Alarm status	• M8 Tx failure	• M3 Tx failure	• Vbus over range
Fault record	• Eps connect fault	 PV volt high 	• Hard over curr
Fault lecolu	 Neutral fault 	• PV short circuit	• Temperature fault
Alarm record	 Bus sample fault 	 Inconsistant 	● √18 Rx fault
	ReservedA	ReservedB	 ReservedC
	ReservedD	ReservedE	 ReservedF
	 ReservedG 	 ReservedH 	 ReservedI
	 ReservedJ 	 ReservedK 	 ReservedL

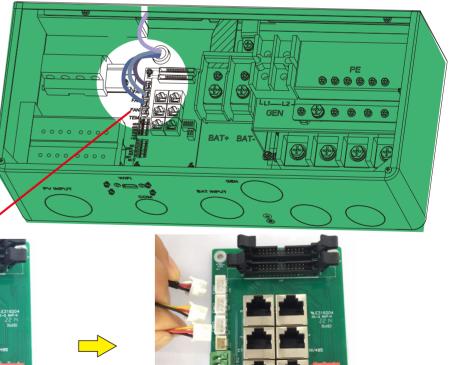
Fault	Meaning	Troubleshooting	
M3 Rx failure	M3 microprocessor fails to receive data from DSP	Restart inverter, if the error still exists, contact	
Model fault	Incorrect model value	Luxpower service or your inverter supplier.	
Eps short circuit	Inverter detected short-circuit on EPS output terminals	 Check if the L1, L2 and N wires are connected correctly at the inverter's EPS output port; Disconnect the EPS breaker to see if the fault remains. If fault persists, contact Luxpower service or your inverter supplier. 	
Eps power reversed Inverter detected power flowing into EPS port			
Bus short circuit	DC Bus is short circuited		
Relay fault	Relay abnormal	Restart the inverter, If the error still exists, contac	
M8 Tx failure	DSP fails to receive data from M8 microprocessor	Luxpower service or your inverter supplier.	
M3 Tx failure	DSP fails to receive data from M3 microprocessor		
Vbus over range	DC Bus voltage too high	Please check if the PV string voltage is within the inverter specification. If string voltage is within range, and this fault still appears, contac Luxpower service or your inverter supplier.	
Eps connect fault	EPS port and grid port are connected mixed up	Check if the wires on the EPS port and grid port connected correctly. If the error exists, contact Luxpower service or your inverter supplier.	
PV volt high	PV voltage is too high	Please check if the PV string voltage is within the inverter specification. If string voltage is within range, and this fault still appears, contact Luxpow service o your inverter supplier.	
Hard over curr	Hardware level over current protection triggered	Restart inverter, If the error still exists, contact Luxpower service or your inverter supplier.	
Neutral fault	Voltage between N and PE is greater than 30V	Check if the neutral wire is connected correctly.	
PV short circuit	Short circuit detected on PV input	Disconnect all PV strings from the inverter. If the error persists, contact Luxpower service or your inverter supplier.	
Temperature fault	Heat sink temperature too high	Install the inverter in a place with good ventilation and away from direct sunlight. If the installation site is okay, please check if the NTC connector inside the inverter is loose.	
Bus sample fault	Inverter detected DC bus voltage lower than PV input voltage		
Inconsistant	Sampled grid voltage values of DSP and M8 microprocessor are inconsistent	Restart inverter, If the error still exists, contact Luxpower service or your inverter supplier.	
M8 Rx fault	M8 microprocessor fails to receive data from DSP		

32

2. Alarm on the LCD

If the dot on the left of fault item is yellow, it means the fault is active. When it is grey, it means the fault is deactive

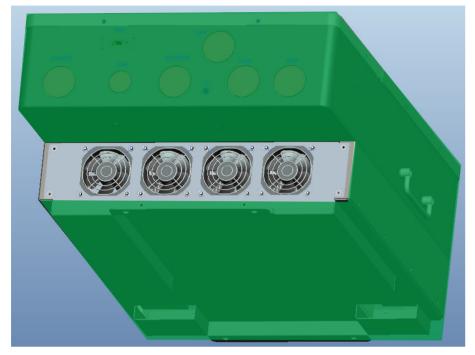
Fault status	 Bat com failure 	 AFCI com failure 	 AFCI high
	 Meter com failure 	 Bat Fault 	 Auto test failure
Alarm status	 Lcd com failure 	• Fwm mismatch	 Fan stuck
Fault record	 Bat reversed 	 Trip by no AC 	• Trip by Vac abnormal
Fault record	• Trip by Fac abnormal	 Trip by iso low 	 Trip by gfci high
Alarm record	 Trip by dci high 	• PV short circuit	• GFCI module fault
	 Bat volt high 	 Bat volt low 	 Bat open
	 Offgrid overload 	 Offgrid overvolt 	 Meter reversed
	 Offgrid dcv high 	RSD Active	 Arc fault
	 ReservedP 	 ReservedQ 	 ReservedR

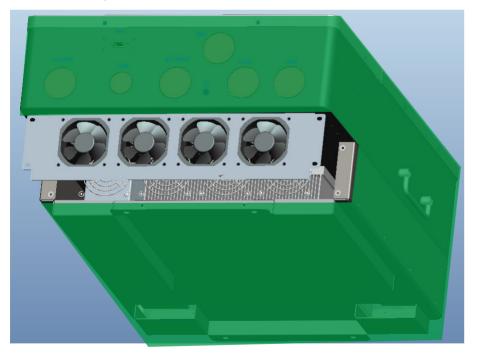

Alarm	Meaning	Troubleshooting	
Bat com failure	Inverter fails to communicate with battery	Check if the communication cable is correct, and if you have chosen the correct battery brand on the inverter LCD.If all is correct but this error persists, please contact Luxpower service or your inverter supplier.	
Meter com failure	Inverter fails to communicate with the meter	 Check if the communication cable is connected correctly and in good condition. Restart inverter. If the fault persists, contact Luxpower service or your inverter supplier. 	
Bat Fault	Battery cannot charge or discharge	 1.Check the battery communication cable for correct pinout on both inverter and battery end; 2. Check if you have chosen an incorrect battery brands; 3. Check if there is a fault on the battery's indicator. If there is a fault, please contact your battery supplier. 	
Auto test failure	Auto test failed	Only applied to Italy model	
Lcd com failure	LCD fails to communicate with M3 microprocessor		
Fwm mismatch	Firmware version mismatch between the microprocessors	Restart inverter. If fault still exists, contact Luxpower service or your inverter supplier.	
Fan stuck	Cooling fan(s) are stuck		
Trip by gfci high	Inverter detected leakage current on AC side	1.Check if there is a ground fault on the grid and load 2.Restart inverter. If the fault remains, contact Luxpower service or your inverter supplier.	
Trip by dci high	Inverter detected high DC injection current on grid port	Restart inverter. If the fault remains, contact Luxpower service or your inverter supplier.	
PV short circuit	Inverter detected short circuited PV input	1.Check if each PV string is connected correctly; 2.Restart inverter. If the fault remains, contact Luxpower service or your inverter supplier.	

GFCI module fault	GFCI module is abnormal
Bat volt high	Battery voltage too high
Bat volt low	Battery voltage too low
Bat open	Battery is disconnected from inverter
Offgrid overload	Overload on EPS port
Offgrid overvolt	EPS voltage is too high
Meter reversed	Meter is connected reversely
Offgrid dcv high	High DC voltage component on EPS output when running off-grid

5.4 Fan replacement

Please check and clean the fans regularly. The recommended period is 6 months. Please replace the fan by following the below diagram if there is problem with the fans. Turn off the system and wait for more than 5 minutes before disassembling the machine.


- a. Open the wiring cover
- b. Unplug the fan cable



Restart inverter. If fault still exists, contact Luxpower service or your inverter supplier.
Check if battery voltage exceeds 59.9V, battery voltage should be within inverter specification.
Check if battery voltage is under 40V, battery voltage should be within inverter specification.
Check battery breaker or battery fuse.
Check if load power on inverter EPS port is within inverter specification.
Restart inverter. If fault still exists, contact Luxpower service or your inverter supplier.
Check if meter communication cable is connected correctly on inverter and meter side.
Restart inverter. If fault still exists, contact Luxpower service or your inverter supplier.

c. Loosen the screws and remove them

d. Remove the fan fixing

- e. Loosen the waterproof connector
- f. Remove the fan and replace it
- g. After the fan is installed, follow the steps just now to push back and assemble it back

PV Input data

Max. usable input current(A) Max. short circuit input current(A) Start input voltage(V) Startup voltage(V) Full power MPPT voltage range(V) DC nominal voltage(V) MPPT tracker DC voltage range(V) MPP operating voltage range(V) Max. power(W) Number of MPPT Inputs per MPPT AC Grid output data Nominal Output Current(A)

Max. Output Current(A) Rated voltage(V) Operating voltage range(V) Nominal power output(W) Operating frequency(Hz) Operating frequency range(Hz) Phase shift Reactive power adjust range THDI Sync inrush (A)

UPS AC output data

Nominal output current(A) Nominal output voltage(V) Rated output power(VA) Operating frequency(Hz) Peak power(VA) THDV

Switching Time

Efficiency

Max. Efficiency @ PV to grid Max. Efficiency @ battery to grid MPPT Efficiency

Battery data

Туре Max. charge current(A) Max. discharge current(A) Nominal voltage(V) Voltage range(V)

General Data

Integrated disconnect Reverse polarity protection DC switch rating for each MPPT Output over-voltage protection varistor Output over current protection Ground fault monitoring Grid monitoring Pole sensitive leakage current Monitoring unit Dimensions(mm) Weight(kg) Degree of protection Cooling concept Topology Relative humidity Altitude(m) Operating temperature range (\Box) Noise emission(dB) Internal consumption(W) Display Communication interface Standard warranty

(35)

12K
25/15/15
34/17/17
100
40
230-500
360
100-600
120-500
18000
3
2/1/1
50
50 230
180-270
11500
50
50
0.99@full load
-0.8~+0.8 leading Adjustable
<3%
35
50
230
11500
50
2xPn, 0.5s
<3% <20
~20
97.5%
94%
99.9%
Lead-acid battery/Lithium battery
250
250
48
40-60
DC switch
Yes
670*490*265mm(22.8*19.3*10.4inch)
50kg(96.8 lbs)
NEMA4X / IP 65
FAN
Transformer-less
0-100%
< 2000m

<2000m

-25~60□, >45□ Derating <50dB

< 15W

Touch color screen RS485/Wi-Fi/CAN

5years

(36)